题目内容
如图,四棱锥
中,侧面
是边长为2的正三角形,且与底面垂直,底面
是
的菱形,
为
的中点.
![]()
(Ⅰ)求
与底面
所成角的大小;
(Ⅱ)求证:
平面
;(Ⅲ)求二面角
的余弦值.
(Ⅰ) 45°; (Ⅱ)参考解析; (Ⅲ) -![]()
【解析】
试题分析:(Ⅰ) 由于平面PDC垂直于平面AC,并且三角形PDC是等边三角形.所以通过做DC边上的高PO.即可得直线
与底面
所成角为∠PAO.通过底面AC是菱形可求得AO,所以通过解直角三角形PAO即可求得∠PAO 的大小.即为结论.
(Ⅱ) 通过建立空间坐标系,写出相关点A,P,D,B,C,M的坐标.计算出向量PA,向量DM,向量DC.通过向量PA与向量DM的数量积为0可得这两条直线垂直.同理可以证明PA垂直于DC.从而可得直线PA垂直于平面CDM.即通过向量知识证得线面垂直.
(Ⅲ)求二面角
的余弦值通过求出平面DCM和平面BCM的法向量.再求两法向量的夹角的余弦值的绝对值,再根据图形判断正负即可.
试题解析:(I)取DC的中点O,由ΔPDC是正三角形,有PO⊥DC.
又∵平面PDC⊥底面ABCD,∴PO⊥平面ABCD于O.连结OA,则OA是PA在底面上的射影.
∴∠PAO就是PA与底面所成角.∵∠ADC=60°,由已知ΔPCD和ΔACD是全等的正三角形,从而求得OA=OP=
.∴∠PAO=45°.∴PA与底面ABCD可成角的大小为45°.
(II)由底面ABCD为菱形且∠ADC=60°,DC=2,DO=1,有OA⊥DC.建立空间直角坐标系如图,则
,
.
由M为PB中点,
∴
.∴![]()
.∴
,
.
∴PA⊥DM,PA⊥DC. ∴PA⊥平面DMC.
(III)
.令平面BMC的法向量
,
则
,从而x+z=0; ……①,
,从而
. ……②
由①、②,取x=−1,则
. ∴可取
.
由(II)知平面CDM的法向量可取
,
∴
.∴所求二面角的余弦值为-
.…13分
![]()
考点:1.线面所成的角.2.空间坐标系的建立.3.线面垂直的判断.4.二面角的求法.