题目内容

已知an=
n0
(2x+1)dx,数列{
1
an
}的前n项和为Sn,bn=n-33,n∈N*,则bnSn的最小值为______.
an=
n0
(2x+1)dx=(x2+x)
|n0
=n2+n
1
an
=
1
n2+n
=
1
n(n+1)
=
1
n
-
1
n+1

∴数列{
1
an
}的前n项和为Sn=
1
a1
+
1
a2
+…+
1
an
=1-
1
2
+
1
2
-
1
3
+…+
1
n
-
1
n+1
=1-
1
n+1
=
n
n+1

又bn=n-33,n∈N*
则bnSn=
n
n+1
×(n-33)=n+1+
34
n+1
-35≥2
34
-35,等号当且仅当n+1+
34
n+1
,即n=
34
-1时成立,
由于n是正整数,且
34
-1∈(4,5),后面求n=4,n=5时bnSn的值
当n=4时,bnSn=
n
n+1
×(n-33)=-
106
5
;当n=5时,bnSn=
n
n+1
×(n-33)=-
70
3

由于-
106
5
>-
70
3
,故bnSn的最小值为-
70
3

故答案为-
70
3
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网