题目内容
已知数列{an},通项an=(2n+
)2,n∈N*,则它的前n项和Sn=
-
+2n-1
-
+2n-1.
| 1 |
| 2n |
| 4n+1 |
| 3 |
| 1 |
| 3•4n |
| 4n+1 |
| 3 |
| 1 |
| 3•4n |
分析:利用等比数列的前n项和公式即可得出.
解答:解:∵an=(2n)2+2+(
)2=4n+
+2,
∴Sn=
+
+2n
=
(4n-1)+
(1-
)+2n
=
-
+2n-1.
故答案为
-
+2n-1.
| 1 |
| 2n |
| 1 |
| 4n |
∴Sn=
| 4(4n-1) |
| 4-1 |
| ||||
1-
|
=
| 4 |
| 3 |
| 1 |
| 3 |
| 1 |
| 4n |
=
| 4n+1 |
| 3 |
| 1 |
| 3•4n |
故答案为
| 4n+1 |
| 3 |
| 1 |
| 3•4n |
点评:本题考查了等比数列的前n项和公式,属于基础题.
练习册系列答案
相关题目