题目内容

等比数列{an},满足a1+a2+a3+a4+a5=3,a12+a22+a32+a42+a52=15,则a1-a2+a3-a4+a5的值是
 
考点:数列的求和
专题:等差数列与等比数列
分析:先设等比数列{an}公比为q,分别用a1和q表示出a12+a22+a32+a42+a52,a1+a2+a3+a4+a5和a1-a2+a3-a4+a5,发现a12+a22+a32+a42+a52除以a1+a2+a3+a4+a5正好与a1-a2+a3-a4+a5相等,进而得到答案.
解答: 解:设数列{an}的公比为q,且q≠1,则
a1+a2+a3+a4+a5=
a1(1-q5)
1-q
=3,①,
a12+a22+a32+a42+a52=
a12(1-q10)
1-q2
=15,②
∴②÷①得
a12(1-q10)
1-q2
÷
a1(1-q5)
1-q
=
a1(1+q5)
1+q
=5,
∴a1-a2+a3-a4+a5=
a1(1+q5)
1+q
=5.
故答案为:5.
点评:本题主要考查了等比数列的性质.属中档题.解题时要认真审题,注意等比数列的性质的灵活运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网