题目内容
已知抛物线y=ax2+bx+c通过点(1,1),且在点(2,-1)处与直线y=x-3相切,求a、b、c的值.
分析:先求函数y=ax2+bx+c的导函数f′(x),再由题意知函数过点(1,1),(2,-1),且在点(2,-1)处的切线的斜率为1,即f′(2)=1,分别将三个条件代入函数及导函数,解方程即可
解答:解:∵f(1)=1,∴a+b+c=1.
又f′(x)=2ax+b,
∵f′(2)=1,∴4a+b=1.
又切点(2,-1),∴4a+2b+c=-1.
把①②③联立得方程组
解得
即a=3,b=-11,c=9.
又f′(x)=2ax+b,
∵f′(2)=1,∴4a+b=1.
又切点(2,-1),∴4a+2b+c=-1.
把①②③联立得方程组
|
|
即a=3,b=-11,c=9.
点评:本题考察了导数的几何意义及其应用,利用方程的思想求参数的值
练习册系列答案
相关题目
已知抛物线y=ax2+bx+c与直线y=-bx交于A、B两点,其中a>b>c,a+b+c=0,设线段AB在x轴上的射影为A1B1,则|A1B1|的取值范围是( )
A、(
| ||||
B、(
| ||||
C、(0,
| ||||
D、(2, 2
|