题目内容

已知O为坐标原点,向量
OA
=(sinα,1),
OB
=(cosα,0),
OC
=(-sinα,2)
,点P满足
AB
=
BP

(Ⅰ)记函数f(α)=
PB
CA
,求函数f(α)的最小正周期;
(Ⅱ)若O,P,C三点共线,求|
OA
+
OB
|
的值.
(Ⅰ)∵
OA
=(sinα,1),
OB
=(cosα,0),
OC
=(-sinα,2)

AB
=(cosα-sinα,-1)
CA
=(2sinα,-1)

OP
=(x,y)
,则
BP
=(x-cosα,y)

AB
=
BP
得,
x=2cosα-sinα
y=-1

OP
=(2cosα-sinα,-1)
,则
PB
=(sinα-cosα,1)

∴f(α)=(sinα-cosα,1)•(2sinα,-1)
=2sin2α-2sinαcosα-1
=-(sin2α+cos2α)
=-
2
sin(2α+
π
4
)

∴f(α)的最小正周期T=π.
(Ⅱ)由O,P,C三点共线可得:
OP
0C

则(-1)×(-sinα)=2×(2cosα-sinα),
解得tanα=
4
3

sin2α=
2sinαcosα
sin2α+cos2α
=
2tanα
1+tan2α
=
24
25

|
OA
+
OB
|=
(sinα+cosα)2+1

=
2+sin2α
=
74
5
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网