题目内容
设α∈(0,
),向量
=(cosα,sinα),b=(-
,
).
(1)证明:向量
+
与
-
垂直;(2)当|2
+
|=|
-2
|时,求角α.
| π |
| 2 |
| a |
| 1 |
| 2 |
| ||
| 2 |
(1)证明:向量
| a |
| b |
| a |
| b |
| a |
| b |
| a |
| b |
(1)证明:由向量
=(cosα,sinα),
=(-
,
),
得|
|=1,|
|=1,则 (
+
)•(
-
)=|
|2-|
|2=0,
所以向量
+
与
-
垂直.…(6分)
(2)将|2
+
|=|
-2
|两边平方,化简得3(|
|2-|
|2)+8
•
=0,,
由|
|=|
|=1,得
•
=0,即 -
cosα+
sinα=0.
所以sin(α-
)=0,注意到α∈(0,
),得α=
.(12分)
| a |
| b |
| 1 |
| 2 |
| ||
| 2 |
得|
| a |
| b |
| a |
| b |
| a |
| b |
| a |
| b |
所以向量
| a |
| b |
| a |
| b |
(2)将|2
| a |
| b |
| a |
| b |
| a |
| b |
| a |
| b |
由|
| a |
| b |
| a |
| b |
| 1 |
| 2 |
| ||
| 2 |
所以sin(α-
| π |
| 6 |
| π |
| 2 |
| π |
| 6 |
练习册系列答案
相关题目