题目内容
不等式的实数解为 ____________
如图,ABCD是边长为3的正方形,DE⊥平面ABCD,AF∥DE,DE=3AF,BE与平面ABCD所成角为60°.
(1)求证:AC⊥平面BDE;
(2)求二面角F-BE-D的余弦值;
(3)设点M是线段BD上一个动点,试确定M的位置,使得AM∥平面BEF,并证明你的结论.
满足的整数m,n作为点P(m,n)的坐标,则点P落在圆x2+y2=16内的概率为________.
在等差数列中,,则的值为( )
A.2 B.3 C.4 D.5
规定表示不超过的最大整数,例如:[3.1]=3,[2.6]=3,[2]=2;若是函数导函数,设,则函数的值域是( )
A. B. C. D.
已知等差数列的公差大于0,且是方程的两根,数列的前n项的和为,且.
(Ⅰ)求数列,的通项公式;
(Ⅱ)记,求证:.
( )
(A) (B) (C) (D)
某企业生产甲、乙两种产品, 根据市场调查与预测, 甲产品的利润与投资成正比, 其关系如图1, 乙产品的利润与投资的算术平方根成正比, 其关系如图2 (注: 利润与投资的单位: 万元).
(Ⅰ) 分别将甲、乙两种产品的利润表示为投资的函数关系式;
(Ⅱ) 该企业筹集了100万元资金投入生产甲、乙两种产品, 问: 怎样分配这100万元资金, 才能使企业获得最大利润, 其最大利润为多少万元?
函数f(x)对任意的m、n∈R,都有f(m+n)=f(m)+f(n)-1,并且x>0时,恒有f(x)>1.
(1)求证:f(x)在R上是增函数;
(2)若f(3)=4,解不等式f(a2+a-5)<2.