题目内容

(2010•茂名二模)已知四棱锥P-ABCD的三视图如图所示,其中正(主)视图与侧(左)视为直角三角形,俯视图为正方形.
(1)求四棱锥P-ABCD的体积;
(2)若E是侧棱PA上的动点.问:不论点E在PA的任何位置上,是否都有BD⊥CE?请证明你的结论?
(3)求二面角D-PA-B的余弦值.
分析:(1)根据三视图的数据,结合三视图的特征直接求四棱锥P-ABCD的体积;
(2)若E是侧棱PA上的动点.不论点E在PA的任何位置上,都有BD⊥CE,说明BD⊥平面PAC,都有CE?平面PAC,即可.
(3)在平面DAP过点D作DF⊥PA于F,连接BF.说明∠DFB为二面角D-AP-B的平面角,在△DFB中,求二面角D-PA-B的余弦值.
解答:解:(1)由三视图可知,四棱锥P-ABCD的底面是边长为1的正方形,
侧棱PC⊥底面ABCD,且PC=2
VP-ABCD=
1
3
S正方形ABCD•PC=
1
3
×12×2=
2
3
.(4分)

(2)不论点E在何位置,都有BD⊥AE(5分)
证明:连接AC,∵ABCD是正方形,
∴BD⊥AC∵PC⊥底面ABCD,且BD?平面ABCD,∴BD⊥PC.(6分)
又∵AC∩PC=C,∴BD⊥平面PAC(7分)
∵不论点E在何位置,都有CE?平面PAC.
∵不论点E在何位置,都有BD⊥CE.(9分)

(3)在平面DAP过点D作DF⊥PA于F,
连接BF∵∠ABP=∠ADP=
π
2
,AD=AB=1,
DP=BP=
5
∴Rt△ADP≌Rt△ABP∴∠PAD=∠PAB,
又AF=AF,AB=AD
从而△ADF≌△ABF,∴BF⊥AP.∴∠DFB为二面角D-AP-B的平面角(12分)
在Rt△ACP中,AP=
AC2+PC2
=
(
2
)
2
+22
=
6

故在Rt△ADP中,DF=
AD•DP
AP
=
5
6
=
30
6
=BF

BD=
2
,在△DFB中,
由余弦定理得:cos∠BFD=
DF2+BF2-BD2
2•DF•BF
=-
1
5

所以二面角D-PA-B的余弦值为-
1
5
.(14分)
点评:本题是基础题,考查几何体的三视图,几何体的体积的求法,准确判断几何体的形状是解题的关键,同时注意:空间想象能力,逻辑思维能力的培养.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网