题目内容

已知P为△ABC所在平面外一点,G1、G2、G3分别是△PAB、△PCB、△PAC的重心.

(1)求证:平面G1G2G3∥平面ABC;

(2)求S∶SABC.

(1)证明略(2)S∶SABC=1∶9


解析:

(1)  如图所示,连接PG1、PG2、PG3并延长分别与边AB、BC、AC交于点D、E、F,连接DE、EF、FD,则有PG1∶PD=2∶3,

PG2∶PE=2∶3,∴G1G2∥DE.

又G1G2不在平面ABC内,

∴G1G2∥平面ABC.同理G2G3∥平面ABC.

又因为G1G2∩G2G3=G2

∴平面G1G2G3∥平面ABC.

(2)  由(1)知=,∴G1G2=DE.

又DE=AC,∴G1G2=AC.

同理G2G3=AB,G1G3=BC.

∴△G1G2G3∽△CAB,其相似比为1∶3,

∴S∶SABC=1∶9.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网