题目内容
在数列{an}中,a1=
,且对任意的n∈N+都有an+1=
.
(Ⅰ)求证:{
-1}是等比数列;
(Ⅱ)若对于任意n∈N+都有an+1<pan,求实数P的取值范围.
| 2 |
| 3 |
| 2an |
| an+1 |
(Ⅰ)求证:{
| 1 |
| an |
(Ⅱ)若对于任意n∈N+都有an+1<pan,求实数P的取值范围.
(Ⅰ)证明:由an+1=
| 2an |
| an+1 |
| 1 |
| an+1 |
| an+1 |
| 2an |
| 1-an |
| 2an |
| 1 |
| 2 |
| 1 |
| an |
又由a1=
| 2 |
| 3 |
| 1 |
| a1 |
| 1 |
| 2 |
∴{
| 1 |
| an |
| 1 |
| a1 |
| 1 |
| 2 |
| 1 |
| 2 |
(Ⅱ)由(Ⅰ),可得
| 1 |
| an |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2n |
即an=
| 2n |
| 2n+1 |
| 2n+1 |
| 2n+1+1 |
∵an+1<pan(n∈N+),
∴p>
| an+1 |
| an |
| 2n+1 |
| 2n+1+1 |
| 2n+1 |
| 2n |
| 2n+1+2 |
| 2n+1+1 |
| 1 |
| 2n+1+1 |
显然,当n=1时,1+
| 1 |
| 2n+1+1 |
| 6 |
| 5 |
∴实数p的取值范围为p>
| 6 |
| 5 |
练习册系列答案
相关题目