题目内容

17.已知$α∈(-\frac{π}{2},0)$且$sin(\frac{π}{2}+α)=\frac{4}{5}$,则tanα=(  )
A.$-\frac{3}{4}$B.$\frac{3}{4}$C.$-\frac{4}{3}$D.$\frac{4}{3}$

分析 由已知利用诱导公式求得cosα,再由同角三角函数的基本关系式求得答案.

解答 解:由$sin(\frac{π}{2}+α)=\frac{4}{5}$,得cosα=$\frac{4}{5}$,
由$α∈(-\frac{π}{2},0)$,∴sin$α=-\sqrt{1-co{s}^{2}α}$=$-\sqrt{1-(\frac{4}{5})^{2}}=-\frac{3}{5}$,
∴tan$α=\frac{sinα}{cosα}=\frac{-\frac{3}{5}}{\frac{4}{5}}=-\frac{3}{4}$.
故选:A.

点评 本题考查利用诱导公式化简求值,关键是熟记三角函数的象限符号,是基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网