题目内容

精英家教网如图所示,椭圆过点B(0,
5
)
,点F、A分别为椭圆的右焦点和右顶点且有
AF
=
FM
=
1
2
FO

(1)求椭圆的方程.
(2)若动点P(x,y),符合条件:
PM
PA
=0
,当y≠0时,求证:动点P(x,y)一定在椭圆内部.
分析:(1)先根据题意确定b=
5
,再由
AF
=
1
2
FO
可以得到a=
3
2
c,最后根据椭圆的基本性质a2=b2+c2可以求出a,b,c的值,从而确定椭圆方程.
(2)先求出点F,M,A的坐标,根据P满足条件
PM
PA
=0
可得到p轨迹方程,然后与椭圆方程联立发现仅有一个公共点A(3,0),又因为当y≠0时考虑,故要舍弃,从而得证.
解答:解:(1)依题意得:b=
5

AF
=
1
2
FO

∴2(a-c)=c,
∴a=
3
2
c
∵a2=b2+c2,∴c=2
∴a=3,c=2,b=
5

故椭圆的方程
x2
9
+
y2
5
=1


(2)由动点P(x,y)符合条件
PM
PA
=0
,F(2,0)、M(1,0)、A(3,0)
得P(x,y)的轨迹方程:(x-2)2+y2=1,是以F(2,0)为圆心,1为半径的圆.
联立椭圆的方程
x2
9
+
y2
5
=1
得:公共点仅为A(3,0)
又y≠0所以A(3,0)舍去,从而该圆始终在椭圆内部.
故动点P(x,y)一定在椭圆内部.
点评:本题主要考查椭圆的基本性质和动点的轨迹方程.椭圆在圆锥曲线中占据重要的位置,在高考中所占的比重特别大,一定要强化复习.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网