题目内容
3.在极坐标系中已知圆C:ρ2-4$\sqrt{2}ρcos(θ-\frac{π}{4})+6=0$与直线 L:3ρcosθ+4ρsinθ+6=0(1)将直线L和圆C的极坐标方程化为直角坐标方程.
(2)求圆C上的点到直线L的最短距离.
分析 (1)由ρcosθ=x,ρsinθ=y,能求出直线L的直角坐标方程;由余弦加法定理和ρ2=x2+y2,ρcosθ=x,ρsinθ=y,能求出圆C的直角坐标方程.
(2)圆C的圆心C(2,2),半径r=$\sqrt{2}$,求出圆心C到直线的距离,由此能求出圆C上的点到直线L的最短距离.
解答 (本小题满分12分)
解:(1)∵直线 L:3ρcosθ+4ρsinθ+6=0,
∴由ρcosθ=x,ρsinθ=y,
得到直线L的直角坐标方程为:3x+4y+6=0,
∵圆C:ρ2-4$\sqrt{2}ρcos(θ-\frac{π}{4})+6=0$,
∴${ρ}^{2}-4\sqrt{2}ρ(cosθcos\frac{π}{4}+sinθsin\frac{π}{4})$+6=0,
∴ρ2-4ρcosθ-4sinθ+6=0,
∴由ρ2=x2+y2,ρcosθ=x,ρsinθ=y,
得圆C的直角坐标方程为:x2+y2-4x-4y+6=0,即(x-2)2+(y-2)2=2.
(2)∵圆C:(x-2)2+(y-2)2=2的圆心C(2,2),半径r=$\sqrt{2}$,
圆心C(2,2)到直线3x+4y+6=0的距离d=$\frac{|6+8+6|}{\sqrt{9+16}}$=4,
∴圆C上的点到直线L的最短距离为4$-\sqrt{2}$.
点评 本题考查直线和C的极坐标方程化为直角坐标方程的求法,考查圆上的点到直线的最短距离的求法,解题时要注意点到直线距离公式和ρ2=x2+y2,ρcosθ=x,ρsinθ=y的合理运用.
练习册系列答案
相关题目
14.己知实数x、y满足$\left\{\begin{array}{l}{y≤x}\\{x+2y≤4}\\{y≥-2}\end{array}\right.$,若存在x、y满足(x+1)2+(y-1)2=r2(r>0),则r的最小值为( )
| A. | $\sqrt{2}$ | B. | $\sqrt{3}$ | C. | $\frac{4}{3}$$\sqrt{2}$ | D. | $\frac{4}{3}$$\sqrt{3}$ |
8.
在如图所示的△ABC中,内角A,B,C所对的边的长分别为a,b,c,已知a=c,且满足$cosC+({cosA-\sqrt{3}sinA})cosB=0$,若点O是△ABC外一点,且OA=2OB=4,∠AOB=θ,则四边形OACB面积的最大值为( )
| A. | $4+4\sqrt{3}$ | B. | $5+4\sqrt{3}$ | C. | 12 | D. | $8+5\sqrt{3}$ |
15.已知三棱柱ABC-A1B1C1的侧棱长为4,底面边长都为3,A1在底面ABC上的射影为BC的中点,则异面直线AB与CC1所成的角的余弦值为( )
| A. | $\frac{9}{16}$ | B. | $\frac{3}{4}$ | C. | $\frac{3\sqrt{3}}{16}$ | D. | $\frac{3}{16}$ |
13.在四边形ABCD中,M为BD上靠近D的三等分点,且满足$\overrightarrow{AM}$=x$\overrightarrow{AB}$+y$\overrightarrow{AD}$,则实数x,y的值分别为( )
| A. | $\frac{1}{3}$,$\frac{2}{3}$ | B. | $\frac{2}{3}$,$\frac{1}{3}$ | C. | $\frac{1}{2}$,$\frac{1}{2}$ | D. | $\frac{1}{4}$,$\frac{3}{4}$ |