题目内容
已知非零向量
,
,若|
|=|
|=1,且
⊥
,又知(2
+3
)⊥(k
-4
),则实数k的值为( )
| a |
| b |
| a |
| b |
| a |
| b |
| a |
| b |
| a |
| b |
| A.-6 | B.-3 | C.3 | D.6 |
由题意
⊥
所以
•
=0,又(2
+3
)⊥(k
-4
),
可知,(2
+3
)•(k
-4
)=2k
•
-8
•
+3k
•
-12
•
=2k-12=0,
解得k=6,
故选D.
| a |
| b |
| a |
| b |
| a |
| b |
| a |
| b |
可知,(2
| a |
| b |
| a |
| b |
| a |
| a |
| a |
| b |
| a |
| b |
| b |
| b |
解得k=6,
故选D.
练习册系列答案
相关题目