题目内容
10.若函数y=f(x)在(0,2)上是增函数,且y=f(x+2)图象关于y轴对称,设a=f($\frac{π}{3}$),b=f($\frac{3π}{4}$),c=f(π),则a,b,c的由大到小顺序为b>a>c.分析 由题意可得函数y=f(x)关于直线x=2对称,比较三个量和2的距离大小可得.
解答 解:∵函数y=f(x)在(0,2)上是增函数,且y=f(x+2)图象关于y轴对称,
又∵y=f(x+2)的图象右移2个单位可得到y=f(x)的图象,
∴函数y=f(x)图象关于直线x=2对称,
∴函数y=f(x)在(2,4)上是减函数,
又∴|$\frac{3π}{4}$-2|<|$\frac{π}{3}$-2|<|π-2|,
∴f($\frac{3π}{4}$)>f($\frac{π}{3}$)>f(π),即b>a>c,
故答案为:b>a>c.
点评 本题考查函数性质,涉及单调性和对称性,属基础题.
练习册系列答案
相关题目
20.对于正实数α,记Mα是满足下列条件的函数f(x)构成的集合:对于任意的实数x1,x2∈R且x1<x2,都有-α(x2-x1)<f(x2)-f(x1)<α(x2-x1)成立.下列结论中正确的是( )
| A. | 若f(x)∈Mα1,g(x)∈Mα2,则f(x)•g(x)∈${M_{{α_1}•{α_2}}}$ | |
| B. | 若f(x)∈Mα1,g(x)∈Mα2且g(x)≠0,则$\frac{f(x)}{g(x)}$∈${M_{\frac{α_1}{α_2}}}$ | |
| C. | 若f(x)∈Mα1,g(x)∈Mα2,则f(x)+g(x)∈${M_{{α_1}+{α_2}}}$ | |
| D. | 若f(x)∈Mα1,g(x)∈Mα2且α1>α2,则f(x)-g(x)∈${M_{{α_1}-{α_2}}}$ |