题目内容
【题目】已知函数
.
(1)当
时,求函数
的单调递增区间;
(2)设
的内角
的对应边分别为
,且
,若向量
与向量
共线,求
的值.
【答案】(1)
;(2)
.
【解析】
(1)利用三角函数的恒等变换化简f(x)的解析式为
.令
,k∈z,求得x的范围,结合
,可得f(x)的递增区间.
(2)由f(C)=2,求得
,结合C的范围求得C的值.根据向量
=(1,sinA)与向量
=(2,sinB)共线,可得
,故有
=
①,再由余弦定理得9=a2+b2﹣ab ②,由①②求得a、b的值.
(1)∵
=
=
.
令
,
解得
,即
,
∵
,∴f(x)的递增区间为
.
(2)由
,得
.
而C∈(0,π),∴
,∴
,可得
.
∵向量向量
=(1,sinA)与向量
=(2,sinB)共线,∴
,
由正弦定理得:
=
①.
由余弦定理得:c2=a2+b2﹣2abcosC,即9=a2+b2﹣ab ②,
由①、②解得
.
练习册系列答案
相关题目
【题目】北京联合张家口获得2022年第24届冬奥会举办权,我国各地掀起了发展冰雪运动的热潮,现对某高中的学生对于冰雪运动是否感兴趣进行调查,该高中男生人数是女生的1.2倍,按照分层抽样的方法,从中抽取110人,调查高中生“是否对冰雪运动感兴趣”得到如下列联表:
感兴趣 | 不感兴趣 | 合计 | |
男生 | 40 | ||
女生 | 30 | ||
合计 | 110 |
(1)补充完成上述
列联表;
(2)是否有99%的把握认为是否喜爱冰雪运动与性别有关.
附:
(其中
).
| 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 |
| 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 |