题目内容
【题目】已知椭圆
:
,曲线
上的动点
满足:
.
(1)求曲线
的方程;
(2)设
为坐标原点,第一象限的点
分别在
和
上,
,求线段
的长.
【答案】(1)
;(2)
.
【解析】试题分析:(1) 由已知,动点
到点
,
的距离之和为
,且
,根据椭圆的定义求出曲线的方程;(2)
两点的坐标分别为
,由
及(1)知,
三点共线且点
不在
轴上,因此可设直线
的方程为
,分别联立直线AB与曲线
和
,得出点A,B的坐标,根据两点间的距离公式求出弦长即可.
试题解析:
(1)由已知,动点
到点
,
的距离之和为
,
且
,所以动点
的轨迹为椭圆,而
,
,所以
,
故椭圆
的方程为
.
(2)解:
两点的坐标分别为
,由
及(1)知,
三点共线且点
不在
轴上,因此可设直线
的方程为
.
将
代入
中,得
,所以
,
将
代入
中,得
,所以
,
又由
,得
,即
,
解得
,
故
.
练习册系列答案
相关题目
【题目】某社区超市购进了A,B,C,D四种新产品,为了解新产品的销售情况,该超市随机调查了15位顾客(记为
)购买这四种新产品的情况,记录如下(单位:件):
顾 客 产 品 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
A | 1 | 1 | 1 | 1 | 1 | ||||||||||
B | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | |||||||
C | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ||||||||
D | 1 | 1 | 1 | 1 | 1 | 1 |
(Ⅰ)若该超市每天的客流量约为300人次,一个月按30天计算,试估计产品A的月销售量(单位:件);
(Ⅱ)为推广新产品,超市向购买两种以上(含两种)新产品的顾客赠送2元电子红包.现有甲、乙、丙三人在该超市购物,记他们获得的电子红包的总金额为X,
求随机变量X的分布列和数学期望;
(Ⅲ)若某顾客已选中产品B,为提高超市销售业绩,应该向其推荐哪种新产品?(结果不需要证明)