题目内容
当x∈[0,1]时,求函数f(x)=x2+(2-6a)x+3a2的最小值.
该函数的对称轴是x=3a-1,
①当3a-1<0,即a<
时,fmin(x)=f(0)=3a2;
②当3a-1>1,即a>
时,fmin(x)=f(1)=3a2-6a+3;
③当0≤3a-1≤1,即
≤a≤
时,fmin(x)=f(3a-1)=-6a2+6a-1.
综上所述,函数的最小值是:当a<
时,fmin(x)=f(0)=3a2,当a>
时,fmin(x)=f(1)=3a2-6a+3;当
≤a≤
时,fmin(x)=f(3a-1)=-6a2+6a-1.
①当3a-1<0,即a<
| 1 |
| 3 |
②当3a-1>1,即a>
| 2 |
| 3 |
③当0≤3a-1≤1,即
| 1 |
| 3 |
| 2 |
| 3 |
综上所述,函数的最小值是:当a<
| 1 |
| 3 |
| 2 |
| 3 |
| 1 |
| 3 |
| 2 |
| 3 |
练习册系列答案
相关题目