题目内容

当x∈[0,1]时,求函数f(x)=x2+(2-6a)x+3a2的最小值.
该函数的对称轴是x=3a-1,
①当3a-1<0,即a<
1
3
时,fmin(x)=f(0)=3a2
②当3a-1>1,即a>
2
3
时,fmin(x)=f(1)=3a2-6a+3;
③当0≤3a-1≤1,即
1
3
≤a≤
2
3
时,fmin(x)=f(3a-1)=-6a2+6a-1.
综上所述,函数的最小值是:当a<
1
3
时,fmin(x)=f(0)=3a2,当a>
2
3
时,fmin(x)=f(1)=3a2-6a+3;当
1
3
≤a≤
2
3
时,fmin(x)=f(3a-1)=-6a2+6a-1.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网