题目内容
【题目】已知在平面直角坐标系
中,椭圆C:
离心率为
,其短轴长为2.
(1)求椭圆C的标准方程;
(2)如图,A为椭圆C的左顶点,P,Q为椭圆C上两动点,直线PO交AQ于E,直线QO交AP于D,直线OP与直线OQ的斜率分别为
,
,且
,
,
(
为非零实数),求
的值.
![]()
【答案】(1)
(2)![]()
【解析】
(1)由题意,求得
,由
,得
,再利用
,即可求得
,得到椭圆的标准方程;
(2)由(1),设
,因为
,得到
,
两边同时乘以
得,
,得到
,
,代入椭圆的方程得
,同理得
,即可得到结论.
![]()
(1)解:因为短轴长2b=2,所以b=1,
又离心率
,所以
,
所以
,所以
,
所以椭圆C的标准方程为
.
(2)由(1),点A
,设
,
则
因为
,所以
,
由①得,
, 由②得,
,
所以
,
两边同时乘以k1得,
,
所以
,
,
代入椭圆的方程得,
,
同理可得,
,
所以
.
练习册系列答案
相关题目
【题目】假设关于某设备的使用年限
(年)和所支出的年平均维修费用
(万元)(即维修费用之和除以使用年限),有如下的统计资料:
使用年限 | 2 | 3 | 4 | 5 | 6 |
维修费用 | 2.2 | 3.8 | 5.5 | 6.5 | 7.0 |
(1)画出散点图;
(2)求
关于
的线性回归方程;
(3)估计使用年限为10年时所支出的年平均维修费用是多少?
参考公式: ![]()