题目内容
12.已知三个函数:①f(x)=x3,②f(x)=tanx,③f(x)=xsinx,其图象能将圆O:x2+y2=1的面积等分的函数的个数是( )| A. | 3 | B. | 2 | C. | 1 | D. | 0 |
分析 若图象能等分圆的面积,则等价为函数为奇函数,关于原点对称即可.
解答 解:若函数图象能等分圆的面积,则函数为奇函数,
则:(1)f(x)=x3;为奇函数,满足条件.
(2)f(x)=tanx;为奇函数,满足条件.
(3)f(x)=xsinx.为偶函数,不满足条件,
故选:B.
点评 本题主要考查函数奇偶性的判断,是基础题.
练习册系列答案
相关题目
2.
蒙特卡洛方法的思想如下:当所求解的问题是某种随机事件=出现的概率时,通过某种“试验”方法,以这种事件出现的频率估计这一随机事件的概率,并将其作为问题的解.现为了估计右图所示的阴影部分面积的大小,使用蒙特卡洛方法的思想,向面积为16的矩形OABC内投掷800个点,其中恰有180个点落在阴影部分内,则可估计阴影部分的面积为( )
| A. | 3.6 | B. | 4 | C. | 12.4 | D. | 无法确定 |
3.已知向量$\overrightarrow{a}$=(1,m),$\overrightarrow{b}$=(3,$\sqrt{3}$),若向量$\overrightarrow{a}$,$\overrightarrow{b}$的夹角为$\frac{π}{3}$,则实数m的值为( )
| A. | -$\sqrt{3}$ | B. | -$\frac{\sqrt{3}}{3}$ | C. | $\frac{\sqrt{3}}{3}$ | D. | $\sqrt{3}$ |
20.已知定义在R上的函数满足条件f(x+$\frac{3}{2$)=-f(x),且函数y=f(x-$\frac{3}{4}$)为奇函数,则下面给出的命题,错误的是( )
| A. | 函数y=f(x)是周期函数,且周期T=3 | B. | 函数y=f(x)在R上有可能是单调函数 | ||
| C. | 函数y=f(x)的图象关于点$(-\frac{3}{4},0)$对称 | D. | 函数y=f(x)是R上的偶函数 |