题目内容

11.设抛物线C:y2=4x上一点P到y轴的距离为4,则点P到抛物线C的焦点的距离是(  )
A.4B.5C.6D.7

分析 由题意可得点P的横坐标为4,由抛物线的定义可得点P到该抛物线焦点的距离等于点P到准线x=-1的距离,由此求得结果.

解答 解:由于抛物线y2=4x上一点P到y轴的距离是4,故点P的横坐标为4.
再由抛物线y2=4x的准线为x=-1,
以及抛物线的定义可得点P到该抛物线焦点的距离等于点P到准线的距离,
故点P到该抛物线焦点的距离是4-(-1)=5,
故选B.

点评 本题主要考查抛物线的定义、标准方程,以及简单性质的应用,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网