题目内容
x,y,z为非负数,且x+y+z=1,求证:yz+zx+xy≤9xyz.分析:先对x,y,z中有0时进行验证满足条件;当x,y,z都非零时,一定有xyz>0成立,故可得到
=
+
+
=(
+
+
)+(
+
)+(
+
)+(
+
),再根据均值不等式可得证.
| yz+zx+xy |
| 9xyz |
| 1 |
| 9x |
| 1 |
| 9y |
| 1 |
| 9z |
| 1 |
| 9 |
| 1 |
| 9 |
| 1 |
| 9 |
| y |
| 9x |
| x |
| 9y |
| z |
| 9x |
| x |
| 9z |
| z |
| 9y |
| y |
| 9z |
解答:证明:当x,y,z中有1个或2个是0时,不等式成立;
当x,y,z都是正数时,xyz>0,
所以
=
+
+
=
+
+
=(
+
+
)+(
+
)+(
+
)+(
+
)
≥
+2×
+2×
+2×
=1(当x=y=z=
时等号成立)
∴yz+zx+xy≤9xyz
得证.
当x,y,z都是正数时,xyz>0,
所以
| yz+zx+xy |
| 9xyz |
| 1 |
| 9x |
| 1 |
| 9y |
| 1 |
| 9z |
| x+y+z |
| 9x |
| x+y+z |
| 9y |
| x+y+z |
| 9z |
=(
| 1 |
| 9 |
| 1 |
| 9 |
| 1 |
| 9 |
| y |
| 9x |
| x |
| 9y |
| z |
| 9x |
| x |
| 9z |
| z |
| 9y |
| y |
| 9z |
≥
| 1 |
| 3 |
| 1 |
| 9 |
| 1 |
| 9 |
| 1 |
| 9 |
| 1 |
| 3 |
∴yz+zx+xy≤9xyz
得证.
点评:本题主要考查均值不等式的应用.均值不等式在不等式的证明以及求解范围时应用比较广泛,占据非常重要的地位,要熟练掌握.
练习册系列答案
相关题目