题目内容
已知α∈(-
,0),cos(α+
)=
,则sin(2α+
)=
| π |
| 2 |
| π |
| 12 |
| 2 |
| 3 |
| π |
| 3 |
-
4
| ||
| 18 |
-
.4
| ||
| 18 |
分析:视角α+
看作整体,将2α+
转化为 2(α+
)+
,利用两角和的正弦公式,二倍角公式计算化简.
| π |
| 12 |
| π |
| 3 |
| π |
| 12 |
| π |
| 6 |
解答:解:∵α∈(-
,0),cos(α+
)=
,∴cos2(α+
)=2cos2(α+
)-1=2×
-1=-
<0,
而2(α+
)∈(-
,
),所以2(α+
)∈(-
,-
),
所以sin2(α+
)=-
=-
,
所以sin(2α+
)=sin[2(α+
)+
]=sin[2(α+
)]cos
+cos[2(α+
)sin
]
=(-
)×
+(-
)×
=-
故答案为:-
.
| π |
| 2 |
| π |
| 12 |
| 2 |
| 3 |
| π |
| 12 |
| π |
| 12 |
| 4 |
| 9 |
| 1 |
| 9 |
而2(α+
| π |
| 12 |
| 5π |
| 6 |
| π |
| 6 |
| π |
| 12 |
| 5π |
| 6 |
| π |
| 2 |
所以sin2(α+
| π |
| 12 |
1-(-
|
4
| ||
| 9 |
所以sin(2α+
| π |
| 3 |
| π |
| 12 |
| π |
| 6 |
| π |
| 12 |
| π |
| 6 |
| π |
| 12 |
| π |
| 6 |
=(-
4
| ||
| 9 |
| ||
| 2 |
| 1 |
| 9 |
| 1 |
| 2 |
=-
4
| ||
| 18 |
故答案为:-
4
| ||
| 18 |
点评:本题考查两角和与差的三角函数值的计算,二倍角公式的应用,考查角的代换,转化、计算能力.将2α+
转化为 2(α+
)+
是关键,在求sin2(α+
)时,应尽可能缩小2(α+
)的取值范围,使sin2(α+
)的正负取值准确化.
| π |
| 3 |
| π |
| 12 |
| π |
| 6 |
| π |
| 12 |
| π |
| 12 |
| π |
| 12 |
练习册系列答案
相关题目