题目内容

已知a,b,c满足:a、b、c∈R+,a2+b2=c2,当n∈N,n>2时,比较cn与an+bn的大小.
分析:依题意,a2<c2,b2<c2
a
c
∈(0,1),
b
c
∈(0,1),利用指数函数的单调性即可比较n>2时,cn与an+bn的大小.
解答:解:∵a、b、c∈R+,a2+b2=c2
(
a
c
)
2
+(
b
c
)
2
=1.
a
c
∈(0,1),
b
c
∈(0,1),
∵y=(
a
c
)
x
与y=(
b
c
)
x
均为减函数,
∴当n>2时,(
a
c
)
n
(
a
c
)
2
(
b
c
)
n
(
b
c
)
2

∴当n>2时,(
a
c
)
n
+(
b
c
)
n
(
a
c
)
2
+(
b
c
)
2
=1,
即当n>2时,an+bn<cn
点评:本题考查不等式比较大小,突出考查指数函数的单调性,考查转化思想与推理分析的能力,属于难题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网