题目内容


已知函数f(x)=-x3+3x2+9x+a.

(1)求f(x)的单调递减区间;

(2)若f(x)在区间[-2,2]上最大值为20,求它在该区间上的最小值。


 (2)因为f(-2)=8+12-18+a=2+a,f(2)=-8+12+18+a=22+a,所以f(x)在[-1,2]因为在(-1,3)上f’(x)>0,所以f(x)在[-1,2]上单调递增,又由于f(x)在[-2,-1]上单调递减,因此f(2)和f(-1)分别是f(x)在区间[-2,2]上的最大值和最小值,于是22+a=20,解得a=-2.

故f(x)=-x3+3x2+9x-2,因此,f{-1}=1+3-9-2=-7

即函数f(x)在区间[-2,2]上的最小值为-7。


练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网