ÌâÄ¿ÄÚÈÝ
¶¨ÒåÏòÁ¿
=£¨a£¬b£©µÄ¡°Ïà°éº¯Êý¡±Îªf£¨x£©=asinx+bcosx£¬º¯Êýf£¨x£©=asinx+bcosxµÄ¡°Ïà°éÏòÁ¿¡±Îª
=£¨a£¬b£©£¨ÆäÖÐOÎª×ø±êԵ㣩£¬¼ÇÆ½ÃæÄÚËùÓÐÏòÁ¿µÄ¡°Ïà°éº¯Êý¡±¹¹³ÉµÄ¼¯ºÏΪS¡£
£¨1£©Éèg£¨x£©=3sin£¨x+
£©+4sinx£¬ÇóÖ¤£ºg£¨x£©¡ÊS£»
£¨2£©ÒÑÖªh£¨x£©=cos£¨x+¦Á£©+2cosx£¬ÇÒh£¨x£©¡ÊS£¬ÇóÆä¡°Ïà°éÏòÁ¿¡±µÄÄ££»
£¨3£©ÒÑÖªM£¨a£¬b£©£¨b¡Ù0£©ÎªÔ²C£º£¨x-2£©2+y2=1ÉÏÒ»µã£¬ÏòÁ¿
µÄ¡°Ïà°éº¯Êý¡±f£¨x£©ÔÚx=x0´¦È¡µÃ×î´óÖµ£¬µ±µãMÔÚÔ²CÉÏÔ˶¯Ê±£¬Çótan2x0µÄȡֵ·¶Î§¡£
£¨1£©Éèg£¨x£©=3sin£¨x+
£¨2£©ÒÑÖªh£¨x£©=cos£¨x+¦Á£©+2cosx£¬ÇÒh£¨x£©¡ÊS£¬ÇóÆä¡°Ïà°éÏòÁ¿¡±µÄÄ££»
£¨3£©ÒÑÖªM£¨a£¬b£©£¨b¡Ù0£©ÎªÔ²C£º£¨x-2£©2+y2=1ÉÏÒ»µã£¬ÏòÁ¿
½â£º£¨1£©g£¨x£©=3sin£¨x+
£©+4sinx=4sinx+3cosx£¬
Æä¡®Ïà°éÏòÁ¿¡¯
=£¨4£¬3£©£¬g£¨x£©¡ÊS¡£
£¨2£©h£¨x£©=cos£¨x+¦Á£©+2cosx =£¨cosxcos¦Á-sinxsin¦Á£©+2cosx =-sin¦Ásinx+£¨cos¦Á+2£©cosx
¡àº¯Êýh£¨x£©µÄ¡®Ïà°éÏòÁ¿¡¯
=£¨-sin¦Á£¬cos¦Á+2£©
Ôò|
|=
=
¡£
£¨3£©
µÄ¡®Ïà°éº¯Êý¡¯f£¨x£©=asinx+bcosx=
sin£¨x+¦Õ£©£¬
ÆäÖÐcos¦Õ=
£¬sin¦Õ=
£®
µ±x+¦Õ=2k¦Ð+
£¬k¡ÊZʱ£¬f£¨x£©È¡µ½×î´óÖµ£¬¹Êx0=2k¦Ð+
-¦Õ£¬k¡ÊZ
¡àtanx0=tan£¨2k¦Ð+
-¦Õ£©=cot¦Õ=
£¬tan2x0=
=
=
ΪֱÏßOMµÄбÂÊ£¬Óɼ¸ºÎÒâÒåÖª£º
¡Ê[-
£¬0£©¡È£¨0£¬
]
Áîm=
£¬Ôòtan2x0=
£¬m¡Ê[-
£¬0£©¡È£¨0£¬
}
µ±-
¡Üm£¼0ʱ£¬º¯Êýtan2x0=
µ¥µ÷µÝ¼õ£¬
¡à0£¼tan2x0¡Ü
£»
µ±0£¼m¡Ü
ʱ£¬º¯Êýtan2x0=
µ¥µ÷µÝ¼õ£¬
¡à-
¡Ütan2x0£¼0
×ÛÉÏËùÊö£¬tan2x0¡Ê[-
£¬0£©¡È£¨0£¬
]¡£
Æä¡®Ïà°éÏòÁ¿¡¯
£¨2£©h£¨x£©=cos£¨x+¦Á£©+2cosx =£¨cosxcos¦Á-sinxsin¦Á£©+2cosx =-sin¦Ásinx+£¨cos¦Á+2£©cosx
¡àº¯Êýh£¨x£©µÄ¡®Ïà°éÏòÁ¿¡¯
Ôò|
£¨3£©
ÆäÖÐcos¦Õ=
µ±x+¦Õ=2k¦Ð+
¡àtanx0=tan£¨2k¦Ð+
Áîm=
µ±-
¡à0£¼tan2x0¡Ü
µ±0£¼m¡Ü
¡à-
×ÛÉÏËùÊö£¬tan2x0¡Ê[-
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿