ÌâÄ¿ÄÚÈÝ
¶¨ÒåÏòÁ¿¨’ÔËË㣺
¨’
=
£¬Èô
=£¨a1£¬a2£©£¬
=£¨b1£¬b2£©£¬ÔòÏòÁ¿
=£¨a1b1£¬a2b2£©£®ÒÑÖª
=£¨
£¬2£©£¬
=£¨
£¬0£©£¬ÇÒµãP£¨x£¬y£©ÔÚº¯Êýy=cos2xµÄͼÏóÉÏÔ˶¯£¬µãQÔÚº¯Êýy=f£¨x£©µÄͼÏóÉÏÔ˶¯£¬ÇÒµãPºÍµãQÂú×㣺
=
¨’
+
£¨ÆäÖÐOÎª×ø±êԵ㣩£¬Ôòº¯Êýy=f£¨x£©µÄ×î´óÖµA¼°×îСÕýÖÜÆÚT·Ö±ðΪ£¨¡¡¡¡£©
| a |
| b |
| c |
| a |
| b |
| c |
| m |
| 1 |
| 2 |
| n |
| ¦Ð |
| 6 |
| OQ |
| m |
| OP |
| n |
·ÖÎö£º¿ÉÏȰѶ¯µãQµÄ×ø±êÉè³ö£¬È»ºó¸ù¾Ý¸ø³öµÄж¨Òå°ÑÏòÁ¿
¡¢
¡¢
µÄ×ø±ê´úÈ룬ÕûÀíºóµÃµ½¹ØÓÚQµãµÄºá×Ý×ø±êµÄ²ÎÊý·½³Ì£¬Ïû²Îºó¼´¿ÉµÃµ½º¯Êýy=f£¨x£©µÄ½âÎöʽ£¬Ôòº¯ÊýµÄ×î´óÖµºÍÖÜÆÚ¿ÉÇó£®
| m |
| n |
| OP |
½â´ð£º½â£ºÉèQ£¨x1£¬y1£©£¬Ôò
=(x1£¬y1)£¬
=(
£¬2)£¬
=(x£¬y)£¬
=(
£¬0)£¬
ÒòΪµãP£¨x£¬y£©ÔÚº¯Êýy=cos2xµÄͼÏóÉÏÔ˶¯£¬ËùÒÔP£¨x£¬cos2x£©£¬
ËùÒÔÓÉ
=
¨’
+
µÃ£º(x1£¬y1)=(
x£¬2cos2x)+(
£¬0)=(
x+
£¬2cos2x)£¬
ËùÒÔ
£¬½âµÃ£ºy1=2cos(4x1-
)£¬
¼´f£¨x£©=2cos£¨4x-
£©£®
ËùÒÔº¯Êýf£¨x£©µÄ×î´óÖµA=2£¬ÖÜÆÚT=
=
£®
¹ÊÑ¡B£®
| OQ |
| m |
| 1 |
| 2 |
| OP |
| n |
| ¦Ð |
| 6 |
ÒòΪµãP£¨x£¬y£©ÔÚº¯Êýy=cos2xµÄͼÏóÉÏÔ˶¯£¬ËùÒÔP£¨x£¬cos2x£©£¬
ËùÒÔÓÉ
| OQ |
| m |
| OP |
| n |
| 1 |
| 2 |
| ¦Ð |
| 6 |
| 1 |
| 2 |
| ¦Ð |
| 6 |
ËùÒÔ
|
| ¦Ð |
| 3 |
¼´f£¨x£©=2cos£¨4x-
| ¦Ð |
| 3 |
ËùÒÔº¯Êýf£¨x£©µÄ×î´óÖµA=2£¬ÖÜÆÚT=
| 2¦Ð |
| 4 |
| ¦Ð |
| 2 |
¹ÊÑ¡B£®
µãÆÀ£º±¾ÌâÒÔÏòÁ¿ÎªÔØÌ壬¿¼²éÁ˺¯ÊýµÄÖÜÆÚºÍÖµÓò£¬¿¼²éÁËÁ½ÏòÁ¿ÏàµÈµÄÌõ¼þ£¬ÑµÁ·ÁËÏû²Î·½·¨£¬½â´ð´ËÌâµÄ¹Ø¼üÊÇÄܹ»ÕýÈ·½â³öº¯Êýf£¨x£©µÄ½âÎöʽ£¬Êôж¨ÒåÎÊÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿