题目内容
已知数列
的首项为
,对任意的
,定义
.
(Ⅰ) 若
,
(i)求
的值和数列
的通项公式;
(ii)求数列
的前
项和
;
(Ⅱ)若
,且
,求数列
的前
项的和.
(1)
,
,![]()
![]()
(2) 当
为偶数时,
;当
为奇数时,![]()
解析试题分析:(Ⅰ) 解:(i)
,
,
………………2分
由
得
当
时,![]()
=
………4分
而
适合上式,所以
.………………5分
(ii)由(i)得:
……………6分![]()
……………7分
…………8分
(Ⅱ)解:因为对任意的
有
,
所以数列
各项的值重复出现,周期为
. …………9分
又数列
的前6项分别为
,且这六个数的和为8. ……………10分
设数列
的前
项和为
,则,
当
时,
, ……………11分
当
时,![]()
, …………12分
当
时![]()
所以,当
为偶数时,
;当
为奇数时,
. ……………13分
考点:数列的通项公式,数列的求和
点评:解决的关键是对于数列的递推关系的理解和运用,并能结合裂项法求和,以及分情况讨论求和,属于中档题。
练习册系列答案
相关题目