题目内容

6.设f(x)在(0,+∞)内可导,且当x>0时,${∫}_{\;}^{\;}$f(x3)dx=(x-1)e-x+C,则f(1)=$\frac{1}{e}$.

分析 由题意可得f(x3)=[(x-1)e-x]′,求导数代值计算可得.

解答 解:由题意可得f(x3)=[(x-1)e-x]′
=(x-1)′e-x+(x-1)(e-x)′
=e-x-(x-1)e-x=e-x(2-x),
∴f(1)=$\frac{1}{e}$
故答案为:$\frac{1}{e}$

点评 本题考查导数的运算,涉及导数和积分的关系,属基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网