题目内容
已知数列{an}的前n项和为Sn=3n,数列{bn}满足b1=-1,bn+1=bn+(2n-1)(n∈N*).
(1)求数列{an}的通项公式an;
(2)求数列{bn}的通项公式bn;
(3)若cn=
,求数列{cn}的前n项和Tn.
解:(1)∵Sn=3n,∴Sn-1=3n-1(n≥2),
∴an=Sn-Sn-1=3n-3n-1=2×3n-1(n≥2).
当n=1时,2×31-1=2≠S1=a1=3,
∴an=![]()
(2)∵bn+1=bn+(2n-1),
∴b2-b1=1,b3-b2=3,b4-b3=5,…,bn-bn-1=2n-3.
以上各式相加得
bn-b1=1+3+5+…+(2n-3)=
=(n-1)2.
∵b1=-1,∴bn=n2-2n.
(3)由题意得cn=![]()
当n≥2时,Tn=-3+2×0×31+2×1×32+2×2×33+…+2(n-2)×3n-1,
∴3Tn=-9+2×0×32+2×1×33+2×2×34+…+2(n-2)×3n,
∴相减得-2Tn=6+2×32+2×33+…+2×3n-1-2(n-2)×3n.
∴Tn=(n-2)×3n-(3+32+33+…+3n-1)
![]()
练习册系列答案
相关题目