ÌâÄ¿ÄÚÈÝ
(Àí)ÒÑÖªÓÐÏàͬÁ½½¹µãF1¡¢F2µÄÍÖÔ² + y2=1(m>1)ºÍË«ÇúÏß - y2=1£¨n>0£©£¬PÊÇËüÃÇ
µÄÒ»¸ö½»µã£¬Ôò¦¤F1PF2µÄÐÎ×´ÊÇ £¨ £©
A£®Èñ½ÇÈý½ÇÐÎ B£®Ö±½ÇÈý½ÇÐÎ C£®¶ÛÓÐÈý½ÇÐÎ D£®Ëæm¡¢n±ä»¯¶ø±ä»¯
(ÎÄ)ÒÑÖªÓÐÏàͬÁ½½¹µãF1¡¢F2µÄÍÖÔ²
+ y2=1ºÍË«ÇúÏß
- y2=1£¬PÊÇËüÃǵÄÒ»¸ö½»µã£¬
Ôò¦¤F1PF2µÄÐÎ×´ÊÇ £¨ £©
A£®Èñ½ÇÈý½ÇÐÎ B£®Ö±½ÇÈý½ÇÐÎ C£®¶ÛÓÐÈý½ÇÐÎ D£®µÈÑüÈý½ÇÐÎ
¡¾´ð°¸¡¿
B. Ìáʾ£º¡ß|PF1|+|PF2|=2£¬|PF1|-|PF2|=¡À2£¬ÓÖm-1=n+1£¬
¡à|PF1|2+|PF2|2=2(m+n)=4(m-1)=|F1F2|2
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
ÒÑÖªÓÐÏàͬÁ½½¹µãF1¡¢F2µÄÍÖÔ²
+y2=1ºÍË«ÇúÏß
-y2=1£¬PÊÇËüÃǵÄÒ»¸ö½»µã£¬Ôò¡÷F1PF2µÄÐÎ×´ÊÇ£¨¡¡¡¡£©
| x2 |
| 5 |
| x2 |
| 3 |
| A¡¢Èñ½ÇÈý½ÇÐÎ |
| B¡¢BÖ±½ÇÈý½ÇÐÎ |
| C¡¢¶ÛÓÐÈý½ÇÐÎ |
| D¡¢µÈÑüÈý½ÇÐÎ |