题目内容
某几何体的三视图如图所示(x=1),则该几何体的体积为 .

考点:由三视图求面积、体积
专题:计算题,空间位置关系与距离
分析:几何体是直三棱柱挖去一个小直三棱柱,判断两个三棱柱的侧棱长和底面三角形的相关几何量的数据,把数据代入棱柱的体积公式计算.
解答:
解:由三视图知:几何体是直三棱柱挖去一个小直三棱柱,
两个三棱柱的侧棱长都是4,大三棱柱的底面三角形底边长为2,该边上的高为4+1=5,
小三棱柱的底面三角形底边长为2,该边上的高为1,
∴几何体的体积V=
×2×5×4-
×2×1×4=16.
故答案为:16.
两个三棱柱的侧棱长都是4,大三棱柱的底面三角形底边长为2,该边上的高为4+1=5,
小三棱柱的底面三角形底边长为2,该边上的高为1,
∴几何体的体积V=
| 1 |
| 2 |
| 1 |
| 2 |
故答案为:16.
点评:本题考查了由三视图求几何体的体积,根据三视图判断几何体的形状及数据所对应的几何量是解题的关键.
练习册系列答案
相关题目