题目内容

19.为了解某班学生喜爱打篮球是否与性别有关,对该班50名学生进行了问卷调查,得到如图的2×2列联表.
喜爱打篮球不喜爱打篮球合计
男生20525
女生101525
合计302050
则至少有(  )的把握认为喜爱打篮球与性别有关.附参考公式:X2=$\frac{n({n}_{11}{n}_{22}-{n}_{12}{n}_{21})^{2}}{{n}_{1•}{n}_{2•}{n}_{•1}{n}_{•2}}$
P(X2>k00.100.050.0250.0100.0050.001
k02.7063.8413.0046.6157.78910.828
A.95%B.99%C.99.5%D.99.9%

分析 根据所给的列联表得到求观测值所用的数据,把数据代入观测值公式中,做出观测值,同所给的临界值表进行比较,得到所求的值所处的位置,得到百分数.

解答 解:根据所给的列联表,得到X2=$\frac{50(20×15-10×5)^{2}}{30×20×25×25}$≈8.333>7.879,
∴至少有99.5%的把握说明喜爱打篮球与性别有关.
故选:C.

点评 根据所给的列联表得到求观测值所用的数据,把数据代入观测值公式中,做出观测值,同所给的临界值表进行比较,得到所求的值所处的位置,得到百分数.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网