题目内容
14.设复数z1,z2在复平面内对应的点关于虚轴对称,且z1=2-i,则z1•$\overline{{z}_{2}}$=( )| A. | -4+3i | B. | 4-3i | C. | -3-4i | D. | -3+4i |
分析 复数z1,z2在复平面内对应的点关于虚轴对称,且z1=2-i,可得:z2=-2-i,$\overline{{z}_{2}}$,再利用复数的运算法则即可得出.
解答 解:∵复数z1,z2在复平面内对应的点关于虚轴对称,且z1=2-i,
∴z2=-2-i,
∴$\overline{{z}_{2}}$=-2+i,
则z1•$\overline{{z}_{2}}$=(2-i)(-2+i)=-3+4i,
故选:D.
点评 本题考查了复数的运算法则、几何意义,考查了推理能力与计算能力,属于基础题.
练习册系列答案
相关题目
19.某学校为了了解该校学生对于某项运动的爱好是否与性别有关,通过随机抽查110名学生,得到如下2×2的列联表:由公式K2=$\frac{n(ad-bc)^2}{(a+b)(c+d)(a+c)(b+d)}$,算得K2=$\frac{110×(40×30-20×20)^2}{60×50×60×50}$≈7.8.
附表(临界值表):
参照附表,以下结论正确是( )
附表(临界值表):
| P(K2≥k) | 0.050 | 0.010 | 0.001 |
| k | 3.841 | 6.635 | 10.828 |
| 男 | 女 | 总计 | |
| 爱好 | 40 | 20 | 60 |
| 不爱好 | 20 | 30 | 50 |
| 总计 | 60 | 50 | 110 |
| A. | 在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别有关” | |
| B. | 只有不超过1%的把握认为“爱好该项运动与性别有关” | |
| C. | 有99%以上的把握认为“爱好该项运动与性别有关” | |
| D. | 有99%以上的把握认为“爱好该项运动与性别无关” |
6.某班学生考试成绩中,数学不及格的占15%,语文不及格的占5%,两门都不及格的占3%,已知一学生数学不及格,则他语文也不及格的概率是( )
| A. | 0.2 | B. | 0.33 | C. | 0.5 | D. | 0.6 |
3.在三角形ABC中,角A、B、C的对边长分别为a,b,c,且满足a:b:c=6:4:3,则$\frac{sin2A}{sinB+sinC}$=( )
| A. | -$\frac{11}{14}$ | B. | $\frac{12}{7}$ | C. | -$\frac{11}{24}$ | D. | -$\frac{7}{12}$ |