题目内容
9.已知tana=3,求下列各式的值:(1)$\frac{4sina-2cosa}{5cosa+3sina}$
(2)(sina+2cosa)2.
分析 (1)由题意利用同角三角函数的基本关系,求得要求式子的值.
(2)由题意利用同角三角函数的基本关系,求得要求式子的值.
解答 解:∵tana=3,∴(1)$\frac{4sina-2cosa}{5cosa+3sina}$=$\frac{4tana-2}{5+3tana}$=$\frac{12-2}{5+9}$=$\frac{5}{7}$;
(2)(sina+2cosa)2=$\frac{{sin}^{2}a+4sinacosa+{4cos}^{2}a}{{sin}^{2}a{+cos}^{2}a}$=$\frac{{tan}^{2}a+4tana+4}{{tan}^{2}a+1}$=$\frac{9+12+4}{9+1}$=$\frac{5}{2}$.
点评 本题主要考查同角三角函数的基本关系的应用,属于基础题.
练习册系列答案
相关题目
19.集合{1,3,5,7,9}用描述法表示出来应是( )
| A. | {x|x是不大于9的非负奇数} | B. | {x|1≤x≤9} | ||
| C. | {x|x≤9,x∈N} | D. | {x∈Z|0≤x≤9} |
20.计算机中常用16进制,采用数字0~9和字母A~F共16个计数符号与10进制得对应关系如下表:
例如用16进制表示D+E=1B,则E×B=( )
| 16进制 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | A | B | C | D | E | F |
| 10进制 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
| A. | 6E | B. | 7C | C. | 8F | D. | 9A |
4.
某校为评估新教改对教学的影响,挑选了水平相当的两个平行班进行对比试验.甲班采用创新教法,乙班仍采用传统教法,一段时间后进行水平测试,成绩结果全部落在[60,100]区间内(满分100分),并绘制频率分布直方图如右图,两个班人数均为60人,成绩80分及以上为优良.
(1)根据以上信息填好下列2×2联表,并判断出有多大的把握认为学生成绩优良与班级有关?
(2)以班级分层抽样,抽取成绩优良的5人参加座谈,现从5人中随机选3人来作书面发言,求发言人至少有2人来自甲班的概率.
(以下临界值及公式仅供参考${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,n=a+b+c+d)
(1)根据以上信息填好下列2×2联表,并判断出有多大的把握认为学生成绩优良与班级有关?
| 是否 优良 班级 | 优良 (人数) | 非优良 (人数) | 合计 |
| 甲 | |||
| 乙 | |||
| 合计 |
| P(K2≥k) | 0.10 | 0.05 | 0.010 |
| k | 2.706 | 3.841 | 6.635 |
14.已知函数$f(x)=\left\{\begin{array}{l}{2^{x+1}}+\frac{1}{2},x≤2\\ \frac{2}{x-2}-{a^{x-3}},x>2({a∈R,a≠0})\end{array}\right.$若$f({f({f(3)})})=-\frac{6}{5}$,则a为( )
| A. | 1 | B. | $\root{3}{{\frac{4}{25}}}$ | C. | $2\sqrt{2}$ | D. | $\root{3}{4}$ |