题目内容
等差数列{an}的前n项和为Sn,等比数列{bn}的公比为
,满足S3=15,a1+2b1=3,a2+4b2=6.
(Ⅰ)求数列{an},{bn}的通项公式an,bn;
(Ⅱ)求数列{an•bn}的前n项和Tn.
| 1 |
| 2 |
(Ⅰ)求数列{an},{bn}的通项公式an,bn;
(Ⅱ)求数列{an•bn}的前n项和Tn.
考点:数列的求和,等差数列的性质,等比数列的性质
专题:等差数列与等比数列
分析:(Ⅰ)设{an}公差为d,由已知条件,利用等差数列和等比数列通项公式求出首项和公差,由此能求出an=3n-1,bn=(
)n.
(Ⅱ)由an•bn=(3n-1)•(
)n,利用错位相减法能求出数列{an•bn}的前n项和Tn.
| 1 |
| 2 |
(Ⅱ)由an•bn=(3n-1)•(
| 1 |
| 2 |
解答:
(Ⅰ)解:设{an}公差为d,
∵等差数列{an}的前n项和为Sn,等比数列{bn}的公比为
,
满足S3=15,a1+2b1=3,a2+4b2=6.
∴
,
解得a1=2,d=3,b1=
,…(4分)
∴an=3n-1,bn=(
)n.…(6分)
(Ⅱ)解:由(Ⅰ)知an•bn=(3n-1)•(
)n,
∴Sn=2×
+5×(
)2+8×(
)3+…+(3n-1)×(
)n,①
Sn=2×(
)2+5×(
)3+…+(3n-4)•(
)n+(3n-1)•(
)n+1,②…(8分)
①-②得:
Sn=2×
+3×[(
)2+(
)3+…+(
)n]-(3n-1)•(
)n+1
=1+3•
-(3n-1)•(
)n+1,…(10分)
整理得Sn=5-(3n+5)•(
)n.…(12分)
∵等差数列{an}的前n项和为Sn,等比数列{bn}的公比为
| 1 |
| 2 |
满足S3=15,a1+2b1=3,a2+4b2=6.
∴
|
解得a1=2,d=3,b1=
| 1 |
| 2 |
∴an=3n-1,bn=(
| 1 |
| 2 |
(Ⅱ)解:由(Ⅰ)知an•bn=(3n-1)•(
| 1 |
| 2 |
∴Sn=2×
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
①-②得:
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
=1+3•
| ||||
1-
|
| 1 |
| 2 |
整理得Sn=5-(3n+5)•(
| 1 |
| 2 |
点评:本题考查数列的通项公式的求法,考查数列的前n项和的求法,解题时要认真审题,注意错位相减法的合理运用.
练习册系列答案
相关题目