题目内容

等差数列{an}的前n项和为Sn,等比数列{bn}的公比为
1
2
,满足S3=15,a1+2b1=3,a2+4b2=6.
(Ⅰ)求数列{an},{bn}的通项公式an,bn
(Ⅱ)求数列{an•bn}的前n项和Tn
考点:数列的求和,等差数列的性质,等比数列的性质
专题:等差数列与等比数列
分析:(Ⅰ)设{an}公差为d,由已知条件,利用等差数列和等比数列通项公式求出首项和公差,由此能求出an=3n-1,bn=(
1
2
n
(Ⅱ)由an•bn=(3n-1)•(
1
2
)n
,利用错位相减法能求出数列{an•bn}的前n项和Tn
解答: (Ⅰ)解:设{an}公差为d,
∵等差数列{an}的前n项和为Sn,等比数列{bn}的公比为
1
2

满足S3=15,a1+2b1=3,a2+4b2=6.
a1+d=5
a1+2b1=3
a1+d+2b1=6

解得a1=2,d=3,b1=
1
2
,…(4分)
∴an=3n-1,bn=(
1
2
n.…(6分)
(Ⅱ)解:由(Ⅰ)知an•bn=(3n-1)•(
1
2
)n

Sn=2×
1
2
+5×(
1
2
)2+8×(
1
2
)3
+…+(3n-1)×(
1
2
)n
,①
1
2
Sn=2×(
1
2
)2+5×(
1
2
)3+
…+(3n-4)•(
1
2
)n
+(3n-1)•(
1
2
)n+1
,②…(8分)
①-②得:
1
2
Sn=2×
1
2
+3×[(
1
2
)2+(
1
2
)3+…+(
1
2
)n]
-(3n-1)•(
1
2
n+1
=1+3•
1
4
[1-(
1
2
)n-1]
1-
1
2
-(3n-1)•(
1
2
)n+1
,…(10分)
整理得Sn=5-(3n+5)•(
1
2
)n
.…(12分)
点评:本题考查数列的通项公式的求法,考查数列的前n项和的求法,解题时要认真审题,注意错位相减法的合理运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网