题目内容
14.在等差数列{an}中,首项a1=-1,数列{bn}满足bn=($\frac{1}{2}$)${\;}^{{a}_{n}}$,且b1b2b3=$\frac{1}{64}$.(1)求数列{an}的通项公式;
(2)设cn=(-1)nan,求数列{cn}的前2n项和T2n.
分析 (1)利用等差数列的通项公式即可得出;
(2)利用分组求和即可得出.
解答 解:(1)设等差数列{an}的公差为d,∵${a_1}=-1,{b_n}={(\frac{1}{2})^{a_n}}$,
∴${b_1}={(\frac{1}{2})^{-1}},{b_2}={(\frac{1}{2})^{-1+d}},{b_3}={(\frac{1}{2})^{-1+2d}}$.
由${b_1}{b_2}{b_3}=\frac{1}{64}$得${(\frac{1}{2})^{-3+3d}}=\frac{1}{64}$,解得d=3.
∴an=-1+(n-1)•3=3n-4.
(2)由(Ⅰ)得:cn=(-1)n(3n-4),
∴${c_{2n-1}}+{c_{2n}}={(-1)^{2n-1}}[{3×(2n-1)-4}]+{(-1)^{2n}}(3×2n-4)=-(6n-7)+(6n-4)=3$,
∴T2n=c1+c2+c3+c4+…+c2n-1+c2n=(c1+c2)+(c3+c4)+…+(c2n-1+c2n)=3n.
点评 本题考查了等差数列的通项公式、分组求和方法,考查了推理能力与计算能力,属于中档题.
练习册系列答案
相关题目
4.在等差数列{an}中,a1,a2015为方程x2-20x+16=0的两根,则a2+a1008+a2014=( )
| A. | 40 | B. | 36 | C. | 30 | D. | 24 |
5.已知点A(2,3),B(-3,-2),若直线l过点P(1,1)与线段AB相交,则直线l的斜率k的取值范围是( )
| A. | k≥2或k≤$\frac{3}{4}$ | B. | $\frac{3}{4}$≤k≤2 | C. | k≥$\frac{3}{4}$ | D. | k≤2 |
2.下列函数中,在区间(0,+∞)上增长速度越来越快的是( )
| A. | y=20071nx | B. | y=x2007 | C. | y=$\frac{{e}^{x}}{2007}$ | D. | y=2007•2x |
9.设函数f(x)=xm+ax(m,a为常数)的导数为f′(x)=2x+1,则数列{$\frac{f(n)}{n•{2}^{n}}$}(n∈N*)的前n项和为( )
| A. | 3-$\frac{n+3}{{2}^{n}}$ | B. | 3-$\frac{n+2}{{2}^{n}}$ | C. | 3+$\frac{n-1}{{2}^{n}}$ | D. | $\frac{3}{2}$-$\frac{n+1}{{2}^{n+1}}$ |
19.已知函数f(x)=$\left\{\begin{array}{l}{(2a-1)x+3a,x≤1}\\{lo{g}_{a}x,x>1}\end{array}\right.$满足对任意的实数x1≠x2,都有$\frac{f({x}_{2})-f({x}_{1})}{{x}_{1}-{x}_{2}}$>0成立,则实数a的取值范围是( )
| A. | (0,1) | B. | (0,$\frac{1}{2}$) | C. | [$\frac{1}{5}$,$\frac{1}{2}$) | D. | [$\frac{1}{5}$,1) |
3.已知a=2${\;}^{-\frac{1}{3}}$,b=log20.7,c=log23,则( )
| A. | a>b>c | B. | a>c>b | C. | c>a>b | D. | c>b>a |