题目内容
设ω是正实数,如果函数f(x)=2sinωx在[-
,
]上是增函数,那么ω的取值范围是______.
| π |
| 4 |
| π |
| 3 |
由正弦型函数的性质,在ω>0时,
所以区间 [-
,
]是函数y=2sinωx的一个单调递增区间,
若函数y=2sinωx(ω>0)在[-
,
]上单调递增,
则
解得0<ω≤
故答案为(0,
].
所以区间 [-
| π |
| 2ω |
| π |
| 2ω |
若函数y=2sinωx(ω>0)在[-
| π |
| 4 |
| π |
| 3 |
则
|
解得0<ω≤
| 3 |
| 2 |
故答案为(0,
| 3 |
| 2 |
练习册系列答案
相关题目