题目内容

已知函数f(x)满足2axf(x)=2f(x)-1,f(1)=1,设无穷数列{an}满足an+1=f(an).
(1)求函数f(x)的表达式;
(2)若a1=3,从第几项起,数列{an}中的项满足an<an+1
(3)若1+
1
m
<a1
m
m-1
(m为常数且m∈N,m≠1),求最小自然数N,使得当n≥N时,总有0<an<1成立.
分析:(1)由函数f(x)满足2axf(x)=2f(x)-1,f(1)=1,我们不得得到参数a的值,进而得到函数的表达式;
(2)要判断从第几项起,数列{an}中的项满足an<an+1我们关键是构造an+1-an的表达式,结合其它已知条件解对应的不等组,即可求解.
(3)总有0<an<1成立,则数列的每一项,均符合要求,包括首项在内,由1+
1
m
<a1
m
m-1
,结合数学归纳法,即可求出满足条件的自然数N.
解答:解:(1)令x=1得2a=1,∴a=
1
2

∴f(x)=
1
2-x

(2)若a1=3,由a2=
1
2-a1
=-1,a3=
1
2-a2
=
1
3
,a4=
1
2-a3
=
3
5

假设当n≥3时,0<an<1,则0<an+1=
1
2-an
1
2-1
=1?2-an>0.
从而an+1-an=
1
2-an
-an=
(1-an)2
2-an
>0?an+1>an
从第2项起,数列{an}满足an<an+1
(3)当1+
1
m
<a1
m
m-1
时,a2=
1
2-a1
,得
m
m-1
<a2
m-1
m-2

同理,
m-1
m-2
<a3
m-2
m-3

假设
m-(n-1)+2
m-(n-1)+1
<an-1
m-(n-1)+1
m-(n-1)

由an=
1
2-an-1
与归纳假设知
m-(n-2)
m-(n-1)
<an
m-(n-1)
m-n
对n∈N*都成立.
当n=m时,
m-(n-2)
m-(n-1)
<am,即am>2.
∴am+1=
1
2-am
<0.
0<am+2=
1
2-am+1
1
2
<1.
由(2)证明知若0<an<1,则0<an+1=
1
2-an
1
2-1
=1.
∴N=m+2,使得n≥N时总有0<an<1成立.
点评:本题(2)中的证明要用到数学归纳法,数学归纳法常常用来证明一个与自然数集N相关的性质,其步骤为:设P(n)是关于自然数n的命题,若1)(奠基) P(n)在n=1时成立;2)(归纳) 在P(k)(k为任意自然数)成立的假设下可以推出P(k+1)成立,则P(n)对一切自然数n都成立.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网