题目内容

已知
OM
=(cosα,sinα),
ON
=(cosx,sinx),
PQ
=(cosx,-sinx+
4
5cosα
)

(1)当cosα=
4
5sinx
时,求函数y=
ON
PQ
的最小正周期;
(2)当
OM
ON
=
12
13
OM
PQ
,α-x,α+x都是锐角时,求cos2α的值.
分析:(1)根据函数y=
ON
PQ
ON
=(cosx,sinx),
PQ
=(cosx,-sinx+
4
5cosα
)
,我们可给出函数的解析式,根据三角恒等变换,我们可将函数的解析式化为余弦型函数的形式,进而根据T=
ω
,求出函数的最小正周期.
(2)因为
OM
=(cosα,sinα),
ON
=(cosx,sinx)
,我们易结合
OM
ON
=
12
13
,再根据α-x、α+x是锐角,我们易求出α-x、α+x的三角函数值,再根据2α=(α-x)+(α+x),求出cos2α的值.
解答:解:(1)∵
ON
=(cosx,sinx),
PQ
=(cosx,-sinx+
4
5cosα
)

所以y=
ON
PQ
=cos2x-sin2x+
4sinx
5cosα

又∵cosα=
4
5sinx

y=cos2x-sin2x+
4sinx
5cosα
=cos2x+sin2x

=cos2x+
1-cos2x
2
=
1
2
cos2x+
1
2

所以该函数的最小正周期是π.

(2)因为
OM
=(cosα,sinα),
ON
=(cosx,sinx)

所以
OM
ON
=cosαcosx+sinαsinx=cos(α-x)=
12
13

∵α-x是锐角
sin(α-x)=
1-cos2(α-x)
=
5
13

OM
PQ

-cosαsinx+
4
5
-sinαcosx=0
,即sin(α+x)=
4
5

∵α+x是锐角
cos(α+x)=
1-sin2(α+x)
=
3
5

∴cos2α=cos[(α+x)+(α-x)]=cos(α+x)cos(α-x)-sin(α+x)sin(α-x)
=
3
5
×
12
13
-
4
5
×
5
13
=
16
65
,即cos2α=
16
65
点评:本题考查的知识点是平面向量的数量积运算,三角函数恒等变换,平行(共线)向量,两角和的余弦公式,解答的关键(1)中要将函数的解析式化为余弦型函数的形式,(2)中关键是分析已知角与未知角的关系.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网