题目内容

18.已知an=logn+1(n+2)(n∈N*),观察下列算式:a1•a2=log23•log34=$\frac{lg3}{lg2}$$•\frac{lg4}{lg3}$=2;a1•a2•a3•a4•a5•a6=log23•log34•…•log78=$\frac{lg3}{lg2}$$•\frac{lg4}{lg3}$•…•$\frac{lg8}{lg7}$=3,…;若a1•a2•a3•…•am=2016(m∈N*),则m的值为(  )
A.22016+2B.22016C.22016-2D.22016-4

分析 由已知得lg(m+2)=lg 22014,由此能求出m.

解答 解:由已知得a1•a2•a3•…•am=$\frac{lg(m+2)}{lg2}$=2 016,
lg(m+2)=lg 22016
解得m=22016-2.
故选:C.

点评 本题考查归纳推理的问题,解题时要注意对数性质的合理运用,是中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网