搜索
题目内容
F
1
、F
2
分别是双曲线
的左、右焦点,A是其右顶点,过F
2
作x轴的垂线与双曲线的一个交点为P,G是
的重心,若
,则双曲线的离心率是( )
A.2
B.
C.3
D.
试题答案
相关练习册答案
C
试题分析:求出F
1
,F
2
、A、G、P的坐标,由
,得GA⊥F
1
F
2
,故G、A 的横坐标相同,可得
=a,从而求出双曲线的离心率. 由题意可得 F
1
(-c,0),F
2
(c,0),A(a,0).把x=c代入双曲线方程可得y=±
,故一个交点为P(c,
),由三角形的重心坐标公式可得G(
,
).若
,则 GA⊥F
1
F
2
,∴G、A 的横坐标相同,∴
="a,"
=3,c=9,故选 C.
点评:解决该试题的关键是求出重心G的坐标,同时能利用向量的数量积为零,来表示向量的垂直关系,进而求解得到。
练习册系列答案
学法大视野单元测试卷系列答案
新领程必考口算应用题系列答案
教材全析系列答案
全优学练测随堂学案系列答案
优加口算题卡系列答案
节节高名师课时计划系列答案
举一反三奥数1000题全解系列答案
全品高分小练习系列答案
达标加提高测试卷系列答案
课课通同步随堂检测系列答案
相关题目
双曲线虚轴的一个端点为M,两个焦点为F
1
,F
2
,
,则双曲线离心率为
A(2,3),F为抛物线y
2
=6x焦点,P为抛物线上动点,则|PF|+|PA|的最小值为( )
A.5
B.4.5
C.3.5
D.不能确定
经过椭圆
的右焦点作倾斜角为
的直线
,交椭圆于A、B两点,O为坐标原点,则
( )
A. -3
B.
C. -3或
D.
已知椭圆
和双曲线
,有相同的焦点,则椭圆与双曲线的离心率的平方和为( )
A.
B.
C.2
D.3
如图,在平面直角坐标系
中,
为椭圆
的
四个顶点,
为其右焦点,直线
与直线
相交于点T,线段
与椭圆的交点
恰为线段
的中点,则该椭圆的离心率为__________.
设直线
关于原点对称的直线为
,若
与椭圆
的交点为P、Q, 点M为椭圆上的动点,则使△MPQ的面积为
的点M的个数为
A.1
B.2
C.3
D.4
过点
的抛物线的标准方程是
已知双曲线的方程为
,则它的一个焦点到一条渐进线的距离是( )
A.2 B 4 C.
D. 12
关 闭
试题分类
高中
数学
英语
物理
化学
生物
地理
初中
数学
英语
物理
化学
生物
地理
小学
数学
英语
其他
阅读理解答案
已回答习题
未回答习题
题目汇总
试卷汇总
练习册解析答案