题目内容
已知函数f(x)满足f(x+y)=f(x)•f(y),且f(1)=
.
(1)当x∈N+时,求f(n)的表达式;
(2)设an=nf(n)
,求证:a1+a2+…+an<2;
(3)设bn=
+b2+…+bn,求
(
+
+…+
).
| 1 |
| 2 |
(1)当x∈N+时,求f(n)的表达式;
(2)设an=nf(n)
|
(3)设bn=
| nf(n+1) |
| f(n) |
|
| lim |
| n→∞ |
| 1 |
| S1 |
| 1 |
| S2 |
| 1 |
| Sn |
(1)令x=n,y=1,得到
f(n+1)=f(n)•f(1)=
f(n)
∵f(n+1)=
f(n),f(1)=
,
∴{f(n)}是首项为
,公比为
的等比数列,
由等比数列前n项和公式,知
∴f(n)=
.
(2)∵f(n)=
,∴an=nf(n)=n×
=
.
设Sn=a1+a2+…+an,
则Sn=
+
+…+
+
,
两边同乘
,
得
Sn=
+
+…+
+
,
错位相减,得
Sn=
+
+
+…+
-
=
-
=1-
-
,
∴Sn=2-
-
<2.
所以a1+a2+…+an<2.
(3)∵bn=
=
=
∴Sn=b1+b2+b3+…+bn
=
+
+
+…+
=
.
∴
+
+
+…+
=4[(1-
)+(
-
)+(
-
)+…+(
-
)]
=4(1-
),
∴
(
+
+…+
)=
4(1-
)=4.
f(n+1)=f(n)•f(1)=
| 1 |
| 2 |
∵f(n+1)=
| 1 |
| 2 |
| 1 |
| 2 |
∴{f(n)}是首项为
| 1 |
| 2 |
| 1 |
| 2 |
由等比数列前n项和公式,知
∴f(n)=
| 1 |
| 2 n |
(2)∵f(n)=
| 1 |
| 2 n |
| 1 |
| 2 n |
| n |
| 2n |
设Sn=a1+a2+…+an,
则Sn=
| 1 |
| 2 |
| 2 |
| 22 |
| n-1 |
| 2 n-1 |
| n |
| 2n |
两边同乘
| 1 |
| 2 |
得
| 1 |
| 2 |
| 1 |
| 22 |
| 2 |
| 2 3 |
| n-1 |
| 2 n |
| n |
| 2 n+1 |
错位相减,得
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 2 |
| 1 |
| 23 |
| 1 |
| 2 n |
| n |
| 2 n+1 |
=
| ||||
1-
|
| n |
| 2 n+1 |
=1-
| 1 |
| 2 n |
| n |
| 2 n+1 |
∴Sn=2-
| 1 |
| 2 n-1 |
| n |
| 2 n+1 |
所以a1+a2+…+an<2.
(3)∵bn=
| nf(n+1) |
| f(n) |
n×
| ||
|
| n |
| 2 |
∴Sn=b1+b2+b3+…+bn
=
| 1 |
| 2 |
| 2 |
| 2 |
| 3 |
| 2 |
| n |
| 2 |
=
| n(n+1) |
| 4 |
∴
| 1 |
| S1 |
| 1 |
| S2 |
| 1 |
| S3 |
| 1 |
| Sn |
=4[(1-
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| n |
| 1 |
| n+1 |
=4(1-
| 1 |
| n+1 |
∴
| lim |
| n→∞ |
| 1 |
| S1 |
| 1 |
| S2 |
| 1 |
| Sn |
| lim |
| n→∞ |
| 1 |
| n+1 |
练习册系列答案
相关题目