题目内容

已知函数f(x)满足f(x+y)=f(x)•f(y),且f(1)=
1
2

(1)当x∈N+时,求f(n)的表达式;
(2)设an=nf(n)
 (n∈N+)
,求证:a1+a2+…+an<2;
(3)设bn=
nf(n+1)
f(n)
 &(n∈N+),Sn=b1
+b2+…+bn
,求
lim
n→∞
(
1
S1
+
1
S2
+…+
1
Sn
)
(1)令x=n,y=1,得到
f(n+1)=f(n)•f(1)=
1
2
f(n)

∵f(n+1)=
1
2
f(n),f(1)=
1
2

∴{f(n)}是首项为
1
2
,公比为
1
2
的等比数列,
由等比数列前n项和公式,知
∴f(n)=
1
2 n

(2)∵f(n)=
1
2 n
,∴an=nf(n)=n×
1
2 n
=
n
2n

设Sn=a1+a2+…+an
则Sn=
1
2
+
2
22
+…+
n-1
2 n-1
+
n
2n

两边同乘
1
2

1
2
Sn=
1
22
+
2
2 3
+…+
n-1
2 n
+
n
2 n+1

错位相减,得
1
2
Sn=
1
2
+
1
2 2
+
1
23
+…+
1
 n
-
n
2 n+1

=
1
2
(1-
1
2 n
)
1-
1
2
-
n
2 n+1

=1-
1
2 n
-
n
2 n+1

Sn=2-
1
2 n-1
-
n
2 n+1
<2

所以a1+a2+…+an<2.
(3)∵bn=
nf(n+1)
f(n)
=
1
2 n+1
1
2 n
=
n
2

∴Sn=b1+b2+b3+…+bn
=
1
2
+
2
2
+
3
2
+…+
n
2

=
n(n+1)
4

1
S1
+
1
S2
+
1
S3
+…+
1
Sn

=4[(1-
1
2
)+(
1
2
-
1
3
)+(
1
3
-
1
4
 )+…+
(
1
n
-
1
n+1
 )]

=4(1-
1
n+1
),
lim
n→∞
(
1
S1
+
1
S2
+…+
1
Sn
)
=
lim
n→∞
4(1-
1
n+1
)
=4.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网