题目内容
△ABC中,a、b、c是内角A、B、C的对边,且lgsinA,lgsinB,lgsinC成等差数列,则下列两条直线l1:(sin2A)x+(sinA)y-a=0,l2:(sin2B)x+(sinC)y-c=0的位置关系是______.
解析:由已知2lgsinB=lgsinA+lgsinC,得 lg(sinB)2=lg(sinA•sinC).
∴sin2B=sinA•sinC.
设l1:a1x+b1y+c1=0,l2:a2x+b2y+c2=0.
∵
=
=
=
,
=
,
=
=
=
,
∴
=
=
,
∴l1与l2重合,
故答案为重合.
∴sin2B=sinA•sinC.
设l1:a1x+b1y+c1=0,l2:a2x+b2y+c2=0.
∵
| a1 |
| a2 |
| sin2A |
| sin2B |
| sin2A |
| sinAsinC |
| sinA |
| sinC |
| b1 |
| b2 |
| sinA |
| sinC |
| c1 |
| c2 |
| -a |
| -c |
| -2RsinA |
| -2RsinC |
| sinA |
| sinC |
∴
| a1 |
| a2 |
| b1 |
| b2 |
| c1 |
| c2 |
∴l1与l2重合,
故答案为重合.
练习册系列答案
相关题目