题目内容

|
OA
|=1,|
OB
|=
3
,∠AOB=
2
3
π
,点C在∠AOB外,且
OB
OC
=0
,设实数m,n满足
OC
=m
OA
+n
OB
,则
m
n
等于
(  )
A、-2
B、2
C、2
3
D、
3
分析:
OC
=m
OA
+n
OB
,两边平方可得,
OC
2
=(m
OA
+n
OB
) 2
,再由已知可得,
OC
-n
OB
=m
OA
,结合
OB
OC
=0
两边同时平方可得,
OC
2
+n2
OB
 2=m2
OA
2
,从而可求
解答:解:∵
OC
=m
OA
+n
OB
|
OA
|=1,|
OB
|=
3
,∠AOB=
2
3
π

OC
2
=(m
OA
+n
OB
) 2
=m2+2mn
OA
OB
+3n2
=m2+3n2-
3
mn

OC
-n
OB
=m
OA
,且
OB
OC
=0

两边同时平方可得,
OC
2
+n2
OB
 2=m2
OA
2

整理可得,
OC
2
=m2-3n2

①②联立可得,
m
n
=2
3

故选C.
点评:本题考查平面向量的基本运算性质,数量积的运算性质,考查向量问题的基本解法,等价转化思想.要区分向量运算与数的运算.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网