题目内容
若|
|=1,|
|=
,∠AOB=
π,点C在∠AOB外,且
•
=0,设实数m,n满足
=m
+n
,则
等于( )
| OA |
| OB |
| 3 |
| 2 |
| 3 |
| OB |
| OC |
| OC |
| OA |
| OB |
| m |
| n |
| A、-2 | ||
| B、2 | ||
C、2
| ||
D、
|
分析:由
=m
+n
,两边平方可得,
2=(m
+n
) 2,再由已知可得,
-n
=m
,结合
•
=0两边同时平方可得,
2+n2
2=m2
2,从而可求
| OC |
| OA |
| OB |
| OC |
| OA |
| OB |
| OC |
| OB |
| OA |
| OB |
| OC |
| OC |
| OB |
| OA |
解答:解:∵
=m
+n
,|
|=1,|
|=
,∠AOB=
π
∴
2=(m
+n
) 2=m2+2mn
•
+3n2=m2+3n2-
mn①
∵
-n
=m
,且
•
=0
两边同时平方可得,
2+n2
2=m2
2
整理可得,
2=m2-3n2②
①②联立可得,
=2
故选C.
| OC |
| OA |
| OB |
| OA |
| OB |
| 3 |
| 2 |
| 3 |
∴
| OC |
| OA |
| OB |
| OA |
| OB |
| 3 |
∵
| OC |
| OB |
| OA |
| OB |
| OC |
两边同时平方可得,
| OC |
| OB |
| OA |
整理可得,
| OC |
①②联立可得,
| m |
| n |
| 3 |
故选C.
点评:本题考查平面向量的基本运算性质,数量积的运算性质,考查向量问题的基本解法,等价转化思想.要区分向量运算与数的运算.
练习册系列答案
相关题目