题目内容

设数列{an},{bn}是等差数列,Tn、Sn分别是数列{an},{bn}的前n项和,且
Tn
Sn
=
n
2n-1
,则
a6
b6
=
 
考点:等差数列的性质
专题:等差数列与等比数列
分析:根据等差数列的性质、前n项和公式,将
a6
b6
转化为:
T11
S11
,代入数据求值即可.
解答: 解:由题意得,Tn、Sn分别是数列{an},{bn}的前n项和,
Tn
Sn
=
n
2n-1

由等差数列的性质得,
a6
b6
=
2a6
2b6
=
a1+a11
b1+b11
=
11
2
(a1+a11)
11
2
(b1+b11)
=
T11
S11
=
11
2×11-1
=
11
21

故答案为:
11
21
点评:本题考查了等差数列的性质、前n项和公式的灵活应用,解题的关键是将项的比转化为前n项和的比.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网