题目内容
已知函数f(x)=cos2-sin2x.
(1)求f的值;
(2)若对于任意的x∈,都有f(x)≤c,求实数c的取值范围.
所以c的取值范围为,+∞.
已知函数为常数)是实数集上的奇函数,函数在区间上是减函数.
(Ⅰ)求实数的值;
(Ⅱ)若在上恒成立,求实数的最大值;
(Ⅲ)若关于的方程有且只有一个实数根,求的值.
已知△ABC的内角A,B,C满足sin 2A+sin(A-B+C)=sin(C-A-B)+,面积S满足1≤S≤2,记a,b,c分别为A,B,C所对的边,则下列不等式一定成立的是( )
A.bc(b+c)>8 B.ab(a+b)>16
C.6≤abc≤12 D.12≤abc≤24
△ABC的内角A,B,C所对的边分别为a,b,c.
(1)若a,b,c成等差数列,证明:sin A+sin C=2sin(A+C);
(2)若a,b,c成等比数列,求cos B的最小值.
已知函数f(x)=(cos x-x)(π+2x)-(sin x+1),g(x)=3(x-π)cos x-4(1+sin x)ln.证明:
(1)存在唯一x0∈,使f(x0)=0;
(2)存在唯一x1∈,使g(x1)=0,且对(1)中的x0,有x0+x1<π.
求函数,的最大值和最小值.
已知函数f(x)=x2+2ax+3,x∈[-1,1],函数的最大值为
求函数的表达式
写出下列函数的对称轴、顶点坐标、值域、单调区间并作出它们的简图。
(1) (2)
在例4的条件下,求的最大值与最小值