题目内容
在△ABC中,设| AB |
| a |
| AC |
| b |
| AP |
| a |
| b |
分析:由
=m
+n
,利用中点关系得:
=
(m
+n
),结合向量的减法的三角形法则得
=
-
=
(m
+n
)-
=(
m-1)
+
n
,同理得到得出:
=
+
=(
m+
)
+(
n+
)
,
最后利用向量相等
=m
+n
=(
m+
)
+(
n+
)
,列出m,n的方程组即可解得:m=
,n=
.
| AP |
| a |
| b |
| AQ |
| 1 |
| 2 |
| a |
| b |
| BQ |
| AQ |
| AB |
| 1 |
| 2 |
| a |
| b |
| a |
| 1 |
| 2 |
| a |
| 1 |
| 2 |
| b |
| AP |
| AC |
| CP |
| 1 |
| 8 |
| 1 |
| 4 |
| a |
| 1 |
| 8 |
| 1 |
| 2 |
| b |
最后利用向量相等
| AP |
| a |
| b |
| 1 |
| 8 |
| 1 |
| 4 |
| a |
| 1 |
| 8 |
| 1 |
| 2 |
| b |
| 2 |
| 7 |
| 4 |
| 7 |
解答:解:
由
=m
+n
,得:
=
(m
+n
),
∴
=
-
=
(m
+n
)-
=(
m-1)
+
n
,
∴
=
[(
m-1)
+
n
]=(
m-
)
+
n
,
由于:
=
-
,
从而:
=(
m+
)
+(
n-1)
,
∴
=(
m+
)
+(
n-
)
,
从而得出:
=
+
=(
m+
)
+(
n+
)
,
故有:
=m
+n
=(
m+
)
+(
n+
)
,
∴
解得:m=
,n=
故答案为:
;
.
| AP |
| a |
| b |
| AQ |
| 1 |
| 2 |
| a |
| b |
∴
| BQ |
| AQ |
| AB |
| 1 |
| 2 |
| a |
| b |
| a |
| 1 |
| 2 |
| a |
| 1 |
| 2 |
| b |
∴
| BR |
| 1 |
| 2 |
| 1 |
| 2 |
| a |
| 1 |
| 2 |
| b |
| 1 |
| 4 |
| 1 |
| 2 |
| a |
| 1 |
| 4 |
| b |
由于:
| CR |
| BR |
| BC |
从而:
| CR |
| 1 |
| 4 |
| 1 |
| 2 |
| a |
| 1 |
| 4 |
| b |
∴
| CP |
| 1 |
| 8 |
| 1 |
| 4 |
| a |
| 1 |
| 8 |
| 1 |
| 2 |
| b |
从而得出:
| AP |
| AC |
| CP |
| 1 |
| 8 |
| 1 |
| 4 |
| a |
| 1 |
| 8 |
| 1 |
| 2 |
| b |
故有:
| AP |
| a |
| b |
| 1 |
| 8 |
| 1 |
| 4 |
| a |
| 1 |
| 8 |
| 1 |
| 2 |
| b |
∴
|
解得:m=
| 2 |
| 7 |
| 4 |
| 7 |
故答案为:
| 2 |
| 7 |
| 4 |
| 7 |
点评:本小题主要考查向量数乘的运算及其几何意义、向量加法减法的应用、向量相等的概念等基础知识,考查运算求解能力,考查数形结合思想、化归与转化思想.属于基础题.
练习册系列答案
相关题目