题目内容

设函数分别在处取得极小值、极大值.平面上点的坐标分别为,该平面上动点满足,点是点关于直线的对称点,.求

(Ⅰ)求点的坐标;

(Ⅱ)求动点的轨迹方程.

 

【答案】

解: (1)令解得

时,, 当时, ,当时,

所以,函数在处取得极小值,在取得极大值,故,

所以, 点A、B的坐标为.

(2) 设

,所以,又PQ的中点在上,

所以

消去.

另法:点P的轨迹方程为其轨迹为以(0,2)为圆心,半径为3的圆;设点(0,2)关于y=2(x-4)的对称点为(a,b),则点Q的轨迹为以(a,b),为圆心,半径为3的圆,由得a=8,b=-2

【解析】略

 

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网